Mixed Coupling Wireless Power Transfer

指導教授:楊慶隆 教授 學生:余道承

國立成功力學

National Cheng Kung University

Wireless Innovative System EM-Applied Laboratory

MIXED COUPLING COILS

Equivalent circuit can be modeled as below:

 Circuits parameters of inner PSC can be modeled as having ratio x, y and z with outer PSC

MEASUREMENT AND SIMULATION RESULTS

Measurement S₁₁ by E5071C ENA of proposed mixed coupling coils and ADS simulation of proposed equivalent circuit:

- > Frequency band at f_{high} is wider due to skin effect.
 - ADS does not support skin effect simulations.

MEASUREMENT AND SIMULATION RESULTS

Measurement and simulation results of lateral misalignment:

- Proposed MCC improves decline rate by 26.4 % at f_{low} .
- S_{21} of proposed MCC has only 16.5 % drop while misaligned 60 mm laterally at f_{high} .

W 4 SE LAB

- f_{high} is **much** dominated by electric coupling.
- $\rightarrow k_m$ has better compensation by k_e .

MEASUREMENT AND SIMULATION RESULTS

Measurement and simulation results of angular misalignment:

- Proposed MCC improves decline rate angularly misaligned 90° by 78.1 % at f_{low} .
- S_{21} of proposed MCC has **no drop but raise** at wide angular misalignment at f_{high} .

